铝硫(Al-S)电池由于其高体积能量密度、高安全性、低成本以及Al和S元素的高丰度而被认为是可以满足日益增长储能需求的替代品。然而,铝硫电池仍存在许多挑战,如多硫化物转化动力学缓慢、电解液兼容性差和潜在的铝腐蚀和枝晶形成等问题。当前大多数研究都集中在设计或开发合适的基体材料或优化兼容的电解质上,以寻求高性能的Al-S体系,包括:i) 设计高导电性的基体来提高电极电导率;ii) 开发杂原子掺杂的多孔结构,以物理/化学方式锚定易溶于电解液的多硫化铝;iii) 引入适当的电解液成分与硫正极和铝负极高度兼容,以获得高反应动力学和较低的极化。然而,目前对Al-S电池的研究现状及进一步发展仍然缺乏系统而深入的总结和分析。基于对铝硫电化学的系统理解,结合团队前期在SEI层调控Li传输以抑制枝晶的形成及引入活性催化剂/活化剂改变界面位点活性,降低锂扩散与反应势垒等研究基础 (Adv. Funct. Mater. 2022, 31, 2110468; ACS Nano 2022, 16, 17729; Energy Storage Mater. 2022, 52, 210;Chem. Eng. J. 2022, 446, 137291; Adv. Funct. Mater. 2021, 31, 2007434; Adv. Sci. 2022, 2202244; Nano Lett. 2022, 22, 8008; Nano Lett. 2021, 21, 3245;Energy. Environ. Mater. 2022, 5,731; Chem. Eng. J. 2022, 429, 132352; Energy Storage Mater. 2019, 18, 246; Energy Storage Mater. 2020, 28, 375; J. Mater. Chem. A 2020, 8, 22240; Chem. Eng. J. 2020, 417, 128172),撰写了全面实现高体积能量密度铝-硫二次电池策略的综述文章。
基于对铝硫电池目前的研究进展缺乏系统认知的现状,中国科学院苏州纳米技术与纳米仿生研究所蔺洪振研究员与德国亥姆赫兹电化学研究所王健博士(现为洪堡学者)联合西安理工大学游才印团队张静博士,全面综述了抑制多硫化物的穿梭以及平滑的铝负极溶解/沉积的具体策略。重点阐述了硫正极从吸附到促进多硫化物转化动力学的催化剂调控的发展;电解质从简单的组分调控到降低离子传输势垒的演变;铝负极保护结合离子传输调控策略实现无枝晶铝负极,更清晰地解读了Al-S电池可能的电化学反应机制及该体系中高活性催化剂潜在的工作机制。最后,进一步展望了实现高性能Al-S电池的方法及大规模储能应用面临的机遇和挑战,对发展高能量密度快速充放Al-S电池体系具有重要的启示作用。
图1. Al-S电池存在的主要问题及解决方案示意图
铝硫电池电化学反应原理及目前存在的主要问题。从铝硫电池电化学反应原理出发,总结出不能实现高性能的主要原因为:多硫化铝转化动力学缓慢、电解液兼容性差和离子传输较慢、潜在的铝腐蚀和枝晶的形成等,严重阻碍了快速充放电Al-S电池的发展(图1)。
图2. 高活性SACs高活性催化剂促进高效硫转化和抑制多硫化物穿梭
系统总结和分析促进高效硫转化和抑制多硫化物穿梭的吸附催化策略。随着对高能量密度要求的不断提高,高含硫正极是实现高面容量和高体积能量密度的必要条件。而传统的载体设计与极性位点的植入可以加强基体多硫化物的吸附。随着高含硫正极的吸附位点趋于饱和,常见的吸附策略抑制穿梭效应的能力有限。进一步提出的“吸附-催化”组合策略,充分利用各自的优势,通过提高转化动力学来缓解多硫化物的累积,增强对穿梭效应的抑制效果。重点介绍了金属基催化剂有效提升多硫化物相互转化动力学的机制,对提高硫利用率和降低电池极化的促进作用(图2)。
图3. 室温离子液体电解液对Al-S电化学反应机制及离子传输的影响
图4. 借助离子液体电解液成分结合电压窗口操控实现电化学反应路径的调控
利用低成本水系电解液和高可逆性离子液体实现高可逆的Al-S电池体系。将可充电铝基电池推向更高容量水平的不可或缺的部分是兼容电解液的选择。事实上,可充电铝硫电池还处于尝试阶段。早期的无机熔盐体系电解质对温度的依耐性强且粘度非常高。低粘度电解液中离子的高输运更有利于实现高性能铝硫电池。近年来发展起来的水系电解液具有较快的离子传输和低粘度,但该电池体系下存在铝表面氧化/钝化层形成、析氢副反应等问题。而室温离子液体作为Al-S电池的电解液,有助于铝离子的快速溶剂化/脱溶,具有高离子电导率。基于此,重点综述了高可逆性的室温离子液体电解液从简单的组分调控到降低离子传输势垒的发展过程
论文链接:https://doi.org/10.1002/adfm.202305674